什么是doublex
官网上对于doublex的介绍很简单,就是一个Test Double的Python实现框架
Powerful test doubles framework for Python
也可以理解为doublex是Python的一个库,用于实现Test Stub/Spy/Mock。
关于Test Double(Stub/Spy/Mock)的理解,可以参考此篇文章。
doublex的安装
安装有多种方式,pip
依然是首选。
pip3 install doublex
doublex基本使用
doublex提供三种类型的Test Double,分别是Stub & Mock & Spy。在介绍它们的具体使用方法之前,先简单介绍下今天例子使用的SUT:
- SUT(system under test) - playerService
- DOC(depended-on component) - dataService, profileService, bodyService, salaryService
playerService接受球员名称和年份,然后返回一个球员的基本信息;这个基本信息由dataService球员数据和profileService球员概况组成,所以playerService依赖于dataService和profileService。playerService也返回由bodyService提供的身体指标,以及由salaryService支持的薪水服务。
由于只是为了体现doublex使用方法的demo,实现非常简单,都是hard code。具体请看github。
Test Stub - Stubs tell you what you wanna hear
doublex提供了Stub()
对象来创建Test Stub,根据参数的不同分为 Stub 和 Free Stub
Stub
假设如果dataService
对象就是我们要替换的依赖对象,Stub(dataService)
带有dataService
对象为参数,那就代表这个Stub实例具有和dataService
对象一样的属性,也就是说这个Stub实例可以“替换”dataService
对象来与SUT进行交互了。
下面代码展示了Stub()基本使用场景和方法
from unittest import TestCase, main
from doublex_demo.Service import dataService as ds
from doublex_demo.Service import profileService as pos
from doublex_demo.Service import playerService as pls
from doublex_demo.Service import bodyService as bs
from doublex import Stub, ANY_ARG, assert_that, is_
class TestStub(TestCase):
def test_stub(self):
playername = "Kawhi Leonard"
#需使用with关键字来创建Stub
#Stub接受dataService类对象作为参数,并且实现dataService类对象全部的方法
#根据dataService的实现,get_assist()等方法不用接受参数,这里的参数必须完全匹配
#get_match_number()可以根据参数的不同返回不同的值
#returns()方法定义返回值
#不能定义非dataService的属性
with Stub(ds.dataService) as stub:
stub.get_assist().returns("6")
stub.get_score().returns("30")
stub.get_rebound().returns("10")
stub.get_match_number(2015).returns(playername + " plays 80 games at the year of 2015")
stub.get_match_number(2016).returns(playername + " plays 81 games at the year of 2016")
#使用来自于hamcrest的assert_that()和is_()做stub的验证
assert_that(stub.get_assist(), is_("6"))
assert_that(stub.get_score(), is_("30"))
assert_that(stub.get_rebound(), is_("10"))
assert_that(stub.get_match_number(2015), is_("Kawhi Leonard plays 80 games at the year of 2015"))
assert_that(stub.get_match_number(2016), is_("Kawhi Leonard plays 81 games at the year of 2016"))
#使用stub代替dataService,来对待测对象playerService进行测试验证
player_service_stub_2016 = pls.playerService(playername, 2016, stub, pos.profileService(playername), bs.bodyService(), ss.salaryService())
assert_that(
player_service_stub_2016.get_player_info().split('\n')[0],
is_("Kawhi Leonard - san antonio spurs"))
assert_that(
player_service_stub_2016.get_player_info().split('\n')[-1],
is_("Kawhi Leonard plays 81 games at the year of 2016"))
player_service_stub_2015 = pls.playerService(playername, 2015, stub, pos.profileService(playername), bs.bodyService(), ss.salaryService())
assert_that(
player_service_stub_2015.get_player_info().split('\n')[-1],
is_("Kawhi Leonard plays 80 games at the year of 2015"))
if __name__ == '__main__':
main()
Free Stub
当Stub()不带参数的时候,称之为Free Stub。由于Free Stub没有指定被替换的依赖服务,所以Free Stub的属性不受任何限制,可以自由定义。
from unittest import TestCase, main
from doublex_demo.Service import dataService as ds
from doublex_demo.Service import profileService as pos
from doublex_demo.Service import playerService as pls
from doublex_demo.Service import bodyService as bs
from doublex import Stub, ANY_ARG, assert_that, is_
class TestStub(TestCase):
def test_stub(self):
playername = "Kawhi Leonard"
#当Stub()不带参数的时候,称之为Free Stub
#ANY_ARG表示任意参数
with Stub() as freestub:
freestub.get_assist().returns("6")
freestub.get_score().returns("30")
freestub.get_rebound().returns("8")
freestub.get_match_number(ANY_ARG).returns(playername + " plays 82 games")
player_service_stub_2017 = pls.playerService(playername, 2017, freestub, pos.profileService(playername), bs.bodyService(), ss.salaryService())
#使用freestub代替dataService,来对待测对象playerService进行测试验证
assert_that(player_service_stub_2017.get_player_info().split('\n')[-2], is_("8"))
assert_that(player_service_stub_2017.get_player_info().split('\n')[-1], is_("Kawhi Leonard plays 82 games"))
if __name__ == '__main__':
main()
除了上述的returns()
方法外,常用的还有raises()
来模拟异常情况
def test_raises(self):
with Stub() as stub:
stub.foo(2).raises(Exception)
with self.assertRaises(Exception):
stub.foo(2)
#stub.foo()的调用会发生异常
如果没有使用returns()
方法,默认的返回值为None
。
from doublex import Stub
# 如果不是定义返回值,不需要使用with关键字来定义stub
stub = Stub()
stub.foo() #这个方法会返回None
#定义返回值,需要使用下面的方式
with Stub() as stub1:
stub1.foo(1).returns("1")
Ad-hoc Stub
通过方法method_returning()
和method_raising()
,我们可以实现对实例建立stub。这种方法不需要使用Stub()
就可以建立stub了。
def test_adhoc_stub(self):
bodyservice = bs.bodyService()
#method_returning()直接在实例上建立stub,并设定返回值
bodyservice.get_height = method_returning("210cm")
assert_that(bodyservice.get_height(), is_("210cm"))
#method_raising()直接在实例上建立stub,并抛出异常
bodyservice.get_weight = method_raising(Exception)
with self.assertRaises(Exception):
bodyservice.get_weight()
Test Spy - Spies remember everything that happens to them
doublex提供了Spy()
对象来创建Test Spy,根据参数的不同分为 Spy,Free Spy和Proxy Spy
下面的例子中,我们使用Spy(Collaborator)
来代替相应的依赖服务,然后验证SUT是否正确的调用
依赖服务和传递参数。
Spy
from unittest import TestCase, main
from doublex_demo.Service import dataService as ds
from doublex_demo.Service import profileService as pos
from doublex_demo.Service import playerService as pls
from doublex import Spy, called, ProxySpy, assert_that
from doublex_demo.Service import bodyService as bs
from doublex_demo.Service import salaryService as ss
class TestSpy(TestCase):
def test_spy(self):
playername = "Kawhi Leonard"
year = 2017
salary = "20m"
#使用Spy(类对象)来创建spy
spy_ss = Spy(ss.salaryService)
#通过SUT调用spy对象的方法
pls.playerService(playername, 2017, ds.dataService(playername), pos.profileService(playername), bs.bodyService(), spy_ss).set_new_salary(salary)
#验证spy_ss.set_salary方法被调用过
assert_that(spy_ss.set_salary, called())
#Spy是Stub的扩展,所以除了记录方法被调用的情况,也可以设定返回值
with Spy(bs.bodyService) as spy_bs_as_stub:
spy_bs_as_stub.get_height().returns("188cm")
spy_bs_as_stub.get_weight().returns("110kg")
spy_bs_as_stub.illnessHistory(2017).returns("Year 2017 no injury")
spy_bs_as_stub.illnessHistory(2018).returns("Year 2017 has ankle injury")
#直接调用spy对象方法
spy_bs_as_stub.get_height()
spy_bs_as_stub.get_weight()
spy_bs_as_stub.illnessHistory(2017)
spy_bs_as_stub.illnessHistory(2018)
#可以验证spy对象方法已经被调用及其参数接受情况
assert_that(spy_bs_as_stub.get_height, called())
assert_that(spy_bs_as_stub.get_weight, called())
assert_that(spy_bs_as_stub.illnessHistory, called().times(2))
#使用anything()去任意匹配
assert_that(spy_bs_as_stub.illnessHistory, called().with_args(anything())) #通过SUT调用spy对象的方法
player_service_spy_2016 = pls.playerService(playername, 2017, ds.dataService(playername), pos.profileService(playername), spy_bs_as_stub, ss.salaryService())
player_service_spy_2016.get_physical_feature(2017)
#验证spy对象方法再一次被方法(SUT)调用
assert_that(spy_bs_as_stub.get_height, called().times(2))
assert_that(spy_bs_as_stub.get_weight, called().times(2))
assert_that(spy_bs_as_stub.illnessHistory, called().times(3))
if __name__ == '__main__':
main()
Free Spy
from unittest import TestCase, main
from doublex_demo.Service import dataService as ds
from doublex_demo.Service import profileService as pos
from doublex_demo.Service import playerService as pls
from doublex import Spy, called, ProxySpy, assert_that
from doublex_demo.Service import bodyService as bs
from doublex_demo.Service import salaryService as ss
class TestSpy(TestCase):
def test_spy(self):
playername = "Kawhi Leonard"
year = 2017
salary = "20m"
#使用with关键字和Spy()来创建free spy
#设置和salaryService一样的方法
with Spy() as free_ss_spy:
free_ss_spy.set_salary(salary).returns("20m")
#通过SUT调用spy对象的方法
pls.playerService(playername, 2017, ds.dataService(playername), pos.profileService(playername), bs.bodyService(), free_ss_spy).set_new_salary(salary)
#验证spy_ss.set_salary方法被调用过
assert_that(free_ss_spy.set_salary, called())
if __name__ == '__main__':
main()
ProxySpy
ProxySpy()
与Spy()
不同的地方是ProxySpy()
接受的对象是实例。
不过我们要注意尽量不要使用ProxySpy(),官方文档给出了如下解释:
Note the ProxySpy breaks isolation. It is not really a double. Therefore is always the worst double and the last resource.
from unittest import TestCase, main
from doublex_demo.Service import dataService as ds
from doublex_demo.Service import profileService as pos
from doublex_demo.Service import playerService as pls
from doublex import Spy, called, ProxySpy, assert_that
from doublex_demo.Service import bodyService as bs
from doublex_demo.Service import salaryService as ss
class TestSpy(TestCase):
def test_spy(self):
playername = "Kawhi Leonard"
year = 2017
salary = "20m"
#传递实例给ProxySpy()
spy_pos = ProxySpy(pos.profileService(playername))
#通过SUT调用spy对象的方法
pls.playerService(playername, 2016, ds.dataService(playername), spy_pos, bs.bodyService(), ss.salaryService()).get_player_info()
#验证spy对象方法被调用过
assert_that(spy_pos.get_player_team, called())
if __name__ == '__main__':
main()
Spy的验证最常用的是下面两个方法
called()
验证方法调用情况with_args()
验证参数调用情况
一个典型的例子如下
from hamcrest import contains_string, less_than, greater_than
from doublex import Spy, assert_that, called
#不设置返回值,可以不用with关键字
spy = Spy()
spy.m1()
spy.m2(None)
spy.m3(2)
spy.m4("hi", 3.0)
spy.m5([1, 2])
spy.m6(name="john doe")
assert_that(spy.m1, called())
assert_that(spy.m2, called())
assert_that(spy.m1, called().with_args())
assert_that(spy.m2, called().with_args(None))
assert_that(spy.m3, called().with_args(2))
assert_that(spy.m4, called().with_args("hi", 3.0))
assert_that(spy.m5, called().with_args([1, 2]))
assert_that(spy.m6, called().with_args(name="john doe"))
#使用hamcrest matchers丰富判断条件
assert_that(spy.m3, called().with_args(less_than(3)))
assert_that(spy.m3, called().with_args(greater_than(1)))
assert_that(spy.m6, called().with_args(name=contains_string("doe")))
calls()
方法可以帮助我们获得更加具体的参数值和返回值,从而进行复杂的验证
def test_calls_spy(self):
salary = "20m"
year = 2017
#创建spy
with Spy(ss.salaryService) as ss_spy:
ss_spy.set_salary(salary)
#调用方法
ss_spy.set_salary(salary)
ss_spy.set_salary("22m")
#使用calls取得调用传入的参数
#多次调用可以多次取得,calls是一个数组
assert_that(ss_spy.set_salary.calls[0].args, is_((salary, )))
assert_that(ss_spy.set_salary.calls[1].args, is_(("22m", )))
#创建spy
with Spy(bs.bodyService) as bs_spy:
bs_spy.get_height().returns("190cm")
bs_spy.illnessHistory(year).returns("no injury")
#调用方法
bs_spy.get_height()
bs_spy.illnessHistory(year)
#使用calls取得调用传入的参数和返回值
assert_that(bs_spy.get_height.calls[0].retval, is_("190cm"))
assert_that(bs_spy.illnessHistory.calls[0].args, is_((year, )))
assert_that(bs_spy.illnessHistory.calls[0].retval, is_("no injury"))
Mock Object - Mock forces the predefined script
doublex提供了Mock()
来实现Mock Object的创建。Mock Object预先定义了一些方法调用的顺序,然后Mock Object被调用的时候,会去验证方法是否按照预定义的顺序和参数调用。验证很简单地使用doublex.verify()
方法,如果不去验证调用的顺序,可以使用doublex.any_order_verify()
。
from unittest import TestCase, main
from doublex_demo.Service import dataService as ds
from doublex_demo.Service import profileService as pos
from doublex_demo.Service import playerService as pls
from doublex import Mock, verify, assert_that, any_order_verify
from doublex_demo.Service import bodyService as bs
from doublex_demo.Service import salaryService as ss
class TestSpy(TestCase):
def test_spy(self):
playername = "Kawhi Leonard"
year = 2017
salary = "20m"
#使用with关键字和Mock()创建mock object
#假设替代salaryService对象
#定义mock需要调用的方法及其参数,此方法与被替代的salaryService中的方法相同
with Mock() as mock:
mock.set_salary("20m")
#在SUT playerservice中调用这个mock
#之前定义的mock.set_salary("20m")会被SUT调用
player_service_mock_2017 = pls.playerService(playername, year, ds.dataService(playername), pos.profileService(playername), bs.bodyService(), mock)
player_service_mock_2017.set_new_salary(salary)
#verify()验证定义的mock期望是否正确被实现
assert_that(mock, verify())
#假设替代dataService对象
#mock可以设置返回值
with Mock() as mock_order:
mock_order.get_score().returns("22")
mock_order.get_assist().returns("3")
mock_order.get_rebound().returns("6")
mock_order.get_match_number(year).returns("77")
#在SUT playerservice中调用这个mock
player_service_mock_2017_order = pls.playerService(playername, year, mock_order, pos.profileService(playername), bs.bodyService(), ss.salaryService())
player_service_mock_2017_order.get_player_info()
# verify()验证定义的mock期望是否正确被实现,且方法调用顺序必须完全一致
assert_that(mock_order, verify())
#假设替代dataService对象,注意mock定义中期望的顺序和之前不一样,也会和执行顺序不一致
with Mock() as mock_any_order:
mock_any_order.get_score().returns("22")
mock_any_order.get_rebound().returns("6")
mock_any_order.get_match_number(year).returns("77")
mock_any_order.get_assist().returns("3")
#在SUT playerservice中调用这个mock
player_service_mock_2017_any_order = pls.playerService(playername, year, mock_any_order, pos.profileService(playername),
bs.bodyService(), ss.salaryService())
player_service_mock_2017_any_order.get_player_info()
#any_order_verify()验证定义的mock期望是否正确被实现,且方法调用顺序不要求完全一致
assert_that(mock_any_order, any_order_verify())
if __name__ == '__main__':
main()
Stubbing properties
对于使用@property的类,doublex提供了非常简单的处理
#假设Student是我们需要替换的类
class Student(object):
@property
def score(self):
return self._score
@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value
from doublex import Spy, Mock, Stub, assert_that, is_
from doublex import property_got, property_set, never, verify
#创建stub,可以直接复制,相当于set操作
with Stub(Student) as stub:
stub.score = 88
assert_that(stub.score, is_(88))
#建立spy
spy = Spy(Student)
#读取score属性,由于没有设置返回值,这里的value会是None
value = spy.score
#使用property_got()方法验证属性是否被调用
assert_that(spy, property_got('score'))
spy.score = 59
spy.score = 98
spy.score = 98
#使用property_set()方法验证赋值情况
assert_that(spy, property_set('score').to(59))
assert_that(spy, property_set('score').to(98).times(2))
assert_that(spy, never(property_set('score').to(99)))
#创建mock
with Mock(Student) as mock:
#设定期望为调用score
mock.score
#调用score
mock.score
#verify()验证
assert_that(mock, verify())
#创建mock
with Mock(Student) as mock1:
#设定期望为score被赋值为80
mock1.score = 80
#赋值80
mock1.score=80
#verify()验证
assert_that(mock1, verify())
Stub delegates
对于Stub返回值的设定,除了returns()
方法,doublex还提供了一个delegates()
方法。delegates()
方法接受函数或生成器或其他可迭代的对象为参数。
def test_delegate_stub(self):
def get_height():
return "181cm"
#创建stub
with Stub(bs.bodyService) as stub:
#使用delegates()来设定返回值,接受方法或是可以迭代的对象
stub.get_height().delegates(get_height)
stub.get_weight().delegates(["120kg", "121kg"])
#验证返回值
assert_that(stub.get_height(), is_("181cm"))
assert_that(stub.get_weight(), is_("120kg"))
assert_that(stub.get_weight(), is_("121kg"))
Stub observer
Stub的方法是可以被观察的。可以使用attach()
方法把一个任意方法和Stub方法绑定起来,然后在每次Stub方法调用的时候,这个attached的方法也会被调用。这样的话,我们就可以在Stub中执行其他代码。
def test_observer_stub(self):
def bar():
print("I am attached")
with Stub() as stub:
stub.foo().returns("I am foo")
stub.foo.attach(bar)
#bar()会在这里执行
assert_that(stub.foo(), is_("I am foo"))
Inline stubbing and mocking
doublex创建mock/stub/spy一般使用的是double context manager的方式,语法如下所示
from doublex import Stub
with Stub() as stub:
stub.method(<args>).returns(<value>)
为了易读性,doublex还提供了when()
和expect_all()
来实现同样的创建功能。
when()
用于stub和spy
def test_inline_stub(self):
#Stub()创建free stub
inline_stub_free = Stub()
#使用when()设置方法参数和返回值
when(inline_stub_free).foo(1).returns("I am inline free stub")
assert_that(inline_stub_free.foo(1), is_("I am inline free stub"))
#Stub(Collaborator)创建stub
inline_stub = Stub(bs.bodyService)
# 使用when()设置方法参数和返回值
when(inline_stub).get_height().returns("188cm")
assert_that(inline_stub.get_height(), is_("188cm"))
def test_inline_spy(self):
#Spy()创建free spy
spy_inline_free = Spy()
#使用when()设置方法参数和返回值
when(spy_inline_free).foo().returns("I am inline foo")
#调用方法
spy_inline_free.foo()
#验证调用情况
assert_that(spy_inline_free.foo(), is_("I am inline foo"))
assert_that(spy_inline_free.foo, called())
#Spy()创建spy
spy_inline = Spy(ss.salaryService)
#使用when()设置方法参数
when(spy_inline).set_salary(ANY_ARG)
#调用方法
spy_inline.set_salary("12m")
#验证调用情况
assert_that(spy_inline.set_salary, called().with_args("12m"))
expect_all()
用于mock
def test_inline_mock(self):
playername = "Kawhi Leonard"
year = 2017
#使用Mock()创建mock
inline_mock = Mock()
#使用expect_all()去设置期望值
expect_call(inline_mock).get_score().returns("33")
expect_call(inline_mock).get_assist().returns("6")
expect_call(inline_mock).get_rebound().returns("7")
expect_call(inline_mock).get_match_number(year).returns("no injury")
#在SUT playerservice中调用这个mock
player_service_mock_2017_order = pls.playerService(playername, year, inline_mock, pos.profileService(playername), bs.bodyService(), ss.salaryService())
player_service_mock_2017_order.get_player_info()
# verify()验证定义的mock期望是否正确被实现,且方法调用顺序必须完全一致
assert_that(inline_mock, verify())
Asynchronous spies
有些情况下SUT调用依赖组件是一个异步行为,有可能依赖组件的调用执行是延后的,这样的话就会产生下面的问题
# THE WRONG WAY
class AsyncTests(unittest.TestCase):
def test_wrong_try_to_test_an_async_invocation(self):
# given
spy = Spy(Collaborator)
sut = SUT(spy)
# when
sut.some_method()
# then
assert_that(spy.write, called())
上面代码中,called()的验证是有可能在spy.write()执行之前就进行了。
doublex提供了一个called.async(timeout)
matcher来支持异步的spy验证
The called assertion waits the corresponding invocation a maximum of timeout seconds.
# THE DOUBLEX WAY
class AsyncTests(unittest.TestCase):
def test_test_an_async_invocation_with_doublex_async(self):
# given
spy = Spy(Collaborator)
sut = SUT(spy)
# when
sut.some_method()
# then
assert_that(spy.write, called().async(timeout=1))